【摘要】针对传统文本特征选择算法没有考虑特征的语义及特征与类别之间关系的问题,提出了一种结合语义和分类贡献的特征选择算法.利用LDA主题模型获取文本和词的表示,通过计算词与文本之间的语义相似度,获取词对文本的重要性.再利用Word2vec词向量模型获取文本类别特征,通过计算文本中的词与文本类别特征之间的语义相似度,获取词对类别的重要性,最后结合词对文本的重要性和词对类别的重要性选择分类贡献度高的词作为最终的分类特征.实验表明,该算法能够有效地降低文本特征数量,减少分类计算开销,降低噪声对分类的影响,提升分类效果.
【关键词】
《建筑知识》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《中国医疗管理科学》 2015-05-12
《重庆高教研究》 2015-06-26
《重庆高教研究》 2015-06-26
《中国铸造装备与技术》 2015-07-06
《重庆高教研究》 2015-06-30
Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved
发表评论
登录后发表评论 (已发布 0条)点亮你的头像 秀出你的观点